Solar Power

Solar power is the technology of obtaining usable energy from the light of the Sun. Solar energy has been used in many traditional technologies for centuries and has come into widespread use where other power supplies are absent, such as in remote locations and in space.

Solar energy is currently used in a number of applications:

* Heating (hot water, building heat, cooking)
* Electricity generation (photovoltaics, heat engines)
* Desalination of seawater.

Its application is spreading as the environmental costs and limited supply of other power sources such as fossil fuels are realized.

The land area required to supply the current global primary energy demand by solar energy using available technology is represented by the dark disks.

Solar radiation reaches the Earth's upper atmosphere at a rate of 1,366 watts per square meter (W/m2). While traveling through the atmosphere, 6% of the incoming solar radiation (insolation) is reflected and 16% is absorbed resulting in a peak irradiance at the equator of 1,020 W/m². Average atmospheric conditions (clouds, dust, pollution) reduce insolation by 20% through reflection and 16% through absorption. In addition to affecting the quantity of insolation reaching the surface, atmospheric conditions also affect the quality of insolation reaching the surface by diffusing incoming light and altering its spectrum.

The image on the right shows the average global irradiance calculated from satellite data collected from 1991 to 1993. For example, in North America the average insolation lies between 125 and 375 W/m² (3 to 9 kWh/m²/day). This is the available power, and not the delivered power. Photovoltaic panels currently convert about 15% of incident sunlight into electricity; therefore, a solar panel in the contiguous United States on average delivers 19 to 56 W/m² or 0.45-1.35 kWh/m²/day. The dark disks on the second image on the right are an example of the land areas that, if covered with solar panels, would produce slightly more energy in the form of electricity than the total primary energy supply in 2003. While average insolation and power values offer insight into solar power's potential on a regional scale, locally relevant conditions need to be assessed to determine the solar potential of a specific site.

A recent concern is global dimming, an effect of pollution that is allowing less sunlight to reach the Earth's surface. It is intricately linked with pollution particles and global warming, and it is mostly of concern for issues of global climate change, but is also of concern to proponents of solar power because of the existing and potential future decreases in available solar energy. The order of magnitude is about 4% less solar energy available at sea level over the timeframe 1961–90, mostly from increased reflection from clouds back into outer space.

After passing through the Earth's atmosphere, most of the sun's energy is in the form of visible and Infrared radiations. Plants use solar energy to create chemical energy through photosynthesis. Humans regularly use this energy burning wood or fossil fuels, or when simply eating the plants.

Many technologies have been developed to make use of solar radiation. Some of these technologies make direct use of the solar energy (e.g. to provide light, heat, etc.), while other technologies produce electricity.

Solar design can be used to achieve comfortable temperature and light levels with little or no additional energy. This can be through passive solar, which maximises the entrance of sunlight in very cold conditions and reduces it in hot weather; and active solar, which uses additional devices such as pumps and fans to direct warm and cool air or fluid.

Solar hot water systems use sunlight to heat water. These systems may be used to heat domestic hot water or for space heating. These systems are basically composed of solar thermal collectors and a storage tank. The three basic classifications of solar water heaters are:

* Active systems which use pumps to circulate water or a heat transfer fluid.
* Passive systems which circulate water or a heat transfer fluid by natural circulation. These are also called thermosiphon systems.
* Batch systems using a tank directly heated by sunlight.

A Trombe wall is a passive solar heating and ventilation system consisting of an air channel sandwiched between glazed windows and a sun-facing wall. Sunlight heats the thermal mass during the day and drives natural circulation through vents at the top and bottom of the wall. During the evening the trombe wall radiates stored heat.

A transpired collector is an active solar heating and ventilation system consisting of a perforated sun-facing wall which acts as a solar thermal collector. The collector pre-heats air as it is drawn into the building's ventilation system through the perforations. These systems are inexpensive and commercial models have achieved efficiencies above 70 percent.

A solar box cooker traps the Sun's energy in an insulated box; such boxes have been successfully used for cooking, pasteurization and fruit canning. Solar cooking is helping many developing countries, both reducing the demands for local firewood and maintaining a cleaner environment for the cooks. The first known western solar oven is attributed to Horace de Saussure in 1767, which impressed Sir John Herschel enough to build one for cooking meals on his astronomical expedition to the Cape of Good Hope in Africa in 1830. Today, there are many different designs in use around the world.

Solar lighting or daylighting is the use of natural light to provide illumination. Daylighting offsets energy use in electric lighting systems and reduces the cooling load on HVAC systems. Although difficult to quantify, the use of natural light also offers physiological and psychological benifits. Builiding orientation, exterior shading, sawtooth roofs, clerestory windows, light shelves, skylights and light tubes are among the many daylighting features. These features may be incorporated in existing structures but are most effective when integrated in a solar design package which accounts for factors such as glare, heat gain, heat loss and time-of-use. Achitectural trends increasingly favor daylighting as a cornerstone of sustainable design.

Daylight saving time (DST) can be seen as a method of utilising solar energy by matching available sunlight to the hours of the day in which it is most useful. DST energy savings have been estimated to reduce total electricity use in California by .5% (3400 MWh) and peak electricity use by 3% (1000 MW).

Solar cells, also referred to as photovoltaic cells, are devices or banks of devices that use the photovoltaic effect of semiconductors to generate electricity directly from sunlight. Until recently, their use has been limited because of high manufacturing costs. One cost effective use has been in very low-power devices such as calculators with LCDs. Another use has been in remote applications such as roadside emergency telephones, remote sensing, cathodic protection of pipe lines, and limited "off grid" home power applications. A third use has been in powering orbiting satellites and other spacecraft.

Total peak power of installed PV is around 5,300 MW as of the end of 2005. This is only one part of solar-generated electric power. For solar reflector plants see below.

Declining manufacturing costs (dropping at 3 to 5% a year in recent years) are expanding the range of cost-effective uses. The average lowest retail cost of a large photovoltaic array declined from $7.50 to $4 per watt between 1990 and 2005. With many jurisdictions now giving tax and rebate incentives, solar electric power can now pay for itself in five to ten years in many places. "Grid-connected" systems - that is, systems with no battery that connect to the utility grid through a special inverter - now make up the largest part of the market. In 2003 worldwide production of solar cells increased by 32%. Between 2000 and 2004 the increase in worldwide solar energy capacity was an annual 60%. 2005 was expected to see large growth again, but shortages of refined silicon have been hampering production worldwide since late 2004. Analysts have predicted the similar supply problems during 2006 and 2007.

Solar thermal energy can be used to heat a heat exchanger to high temperature and the heat used to produce electric power or for other industrial purposes.

Power towers (also know as 'central tower' power plants or 'heliostat' power plants (power towers)) use an array of flat, moveable mirrors (called heliostats) to focus the sun's rays upon a collector tower (the target). The high energy at this point of concentrated sunlight is transferred to a substance that can store the heat for later use.

Solar energy converted to heat in a concentrating collector can be used to boil water into steam (as is done in nuclear and coal power plants) to drive a steam engine or steam turbine. The concentrating collector can be an trough collector, parabolic collector, or power tower.

Solar energy converted to heat in a concentrating (dish or trough parabolic) collector can be used to drive a Stirling engine. The Stirling engine is a type of heat engine which uses a sealed working gas (i.e. a closed cycle) and does not require a water supply.

A solar Stirling system holds the record for converting solar energy into electricity (30 percent at 1,000 watts per square meter). Such concentrating systems produce little or no power in overcast conditions and incorporate a solar tracker to point the device directly at the sun.

A solar updraft tower is a relatively low-tech solar thermal power plant where air passes under a very large agricultural glass house (between 2 and 8 km in diameter), is heated by the sun and channeled upwards towards a convection tower. It then rises naturally and is used to drive turbines, which generate electricity.

An energy tower is an alternative proposal to the solar updraft tower. The energy tower is driven by spraying water at the top of the tower; evaporation of water causes a downdraft by cooling the air thereby increasing its density, driving windturbines at the bottom of the tower. It requires a hot arid climate and large quantities of water (seawater may be used for this purpose) but it does not require the large glass house of the solar updraft tower.

A solar pond is a relatively low-tech, low cost approach to harvesting solar energy. The principle is to fill a pond with 3 layers of water:

1. A top layer with a low salt content
2. An intermediate insulating layer with a salt gradient, which sets up a density gradient that prevents heat exchange by natural convection in the water.
3. A bottom layer has with a high salt content which reaches a temperature approaching 90 degrees Celsius.

The different densities in the layers because of their salt content prevent convection currents developing which would normally transfer the heat to the surface and then to the air above. The heat trapped in the salty bottom layer can be used for different purposes, such as heating of buildings, industrial processes, or generating electricity. There is one in use at Bhuj, Gujarat, India and another at the University of Texas El Paso.

Solar chemical refers to a number of possible processes that harness solar energy by absorbing sunlight in a chemical reaction in a way similar to photosynthesis in plants but without using living organisms. No practical process has yet emerged.
A promising approach is to use focused sunlight to provide the energy needed to split water into its constituent hydrogen and oxygen in the presence of a metallic catalyst such as zinc.

While metals, such as zinc, have been shown to drive photoelectrolysis of water, more research has focused on semiconductors. Further research has examined transition metal compounds, in particular titania, titanates, niobates, and tantalates. Unfortunately, these materials exhibit very low efficiencies, because they require ultraviolet light to drive the photoelectrolysis of water. Current materials also require an electrical voltage bias for the hydrogen and oxygen gas to evolve from the surface, another disadvantage. Current research is focusing on the development of materials capable of the same water splitting reaction using lower energy visible light.

It is also possible to use solar energy to drive industrial chemical processes without a requirement for fossil fuel.

The oil in plant seeds, in chemical terms, very closely resembles that of petroleum. Many, since the invention of the Diesel engine, have been using this form of captured solar energy as a fuel comparable to petrodiesel - for functional use in any diesel engine or generator and known as Biodiesel. A 1998 joint study by the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) traced many of the various costs involved in the production of biodiesel and found that overall, it yields 3.2 units of fuel product energy for every unit of fossil fuel energy consumed. Other Biofuels include ethanol, wood for stoves, ovens and furnaces, and methane gas produced from biofuels through chemical processes.

Direct solar power involves a single transformation of sunlight which results in a useable form of energy.

* Sunlight hits a photovoltaic cell creating electricity.
* Sunlight heats an absorber plate of a solar thermal collector.
* Sunlight strikes a solar sail on a space craft and is converted directly into a force on the sail which causes motion of the craft.
* Sunlight strikes a light mill and causes the vanes to rotate as mechanical energy, little practical application has yet been found for this effect.
* Sunlight enters a building providing direct illumination.

Indirect solar power involves multiple transformations of sunlight which result in a useable form of energy.

* Vegetation uses photosynthesis to convert solar energy to chemical energy incorporated in biomass. Biomass may be burned directly to produce heat and electricity or processed into methane (natural gas), hydrogen and other biofuels.
* Hydroelectric dams and wind turbines are powered by solar energy through its interaction with the Earth's atmosphere and the resulting weather phenomena.
* Ocean thermal energy production uses the thermal gradients present across ocean depths to generate power. These temperature differences are because of the energy of the sun.
* Fossil fuels are ultimately derived from solar energy captured by vegetation in the geological past.
* Sunlight is collected using focusing mirrors and transmitted via optical fibers into a building's interior to supplement lighting.

Passive solar systems use non-mechanical techniques of capturing, converting and distributing sunlight into useable forms of energy such as heating, lighting or ventillation. These techniques include selecting materials with favorable thermal properties, designing spaces that naturally circulate air and referencing the position of a building to the sun.

* Passive solar water heaters use a thermosiphon to circulate fluid.
* A Trombe wall circulates air by natural circulation and acts as a thermal mass which absorbs heat during the day and radiates heat at night.
* Clerestory windows, light shelves, skylights and light tubes can be used among other daylighting techniques to illuminate a building's interior.
* Passive solar water distillers may use capillary action to pump water.

Active solar systems use mechanical components such as pumps and fans to process sunlight into useable forms of energy.

Concentrating solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam capable of producing high temperatures and correspondingly high thermodynamic efficiencies. Concentrating solar is generally associated with solar thermal applications but concentrating photovoltaic (CPV) applications exist as well and these technologies also exhibit improved efficiencies. CSP systems require direct insolation to operate properly.

Concentrating solar power systems vary in the way they track the sun and focus light.

* Line focus/Single-axis
o A solar trough consists of a linear parabolic reflector which concentrates light on a receiver positioned along the reflector's focal line. These systems use single-axis tracking to follow the sun. A working fluid (oil, water) flows through the receiver and is heated up to 400 °C before transfering its heat to a distillation or power generation system. Trough systems are the most developed of the CSP technologies. The Solar Electric Generating System (SEGS) plants in California and Plataforma Solar de Almería's SSPS-DCS plant in Spain are representatives of this technology.
* Point focus/Dual-axis
o A power tower consists of an array of flat reflectors (heliostats) which concentrate light on a central receiver located on a tower. These systems use dual-axis tracking to follow the sun. A working fluid (air, water, molten salt) flows through the receiver where it is heated up to 1000 °C before transferring its heat to a power generation or energy storage system. Power towers are less advanced than trough systems but they offer higher efficiency and energy storage capability. The Solar Two in Daggett, California and the Planta Solar 10 (PS10) in Sanlucar la Mayor, Spain are representatives of this technology.
o A parabolic dish or dish/engine system consists of a stand-alone parabolic reflector which concentrates light on a receiver positioned at the reflector's focal point. These systems use dual-axis tracking to follow the sun. A working fluid (hydrogen, helium, air, water) flows through the receiver where it is heated up to 1500 °C before transferring its heat to a sterling engine for power generation. Parabolic dish systems display the highest solar-to-electric efficiency among CSP technologies and their modular nature offers scalability. The Stirling Energy Systems (SES) and Science Applications International Corporation (SAIC) dishes at UNLV and the Big Dish in Canberra, Australia are representatives of this technology.

Non-concentrating photovoltaic and solar thermal systems do not concentrate sunlight. While the maximum attainable temperatures (200 °C) and thermodynamic efficiencies are lower, these systems offer simplicity of design a have the ability to effectively utilize diffuse insolation. Flat-plate thermal and photovoltaic panels are representatives of this technology.

Advantages and disadvantages of solar power:


* The 122 PW of sunlight reaching the earth's surface is plentiful compared to the 13 TW average power consumed by humans.

* Solar power is pollution free during use. Production end wastes and emissions are manageable using existing pollution controls. End-of-use recycling technologies are under development.

* Facilities can operate with little maintenance or intervention after initial setup.

* Solar electric generation is economically competitive where grid connection or fuel transport is difficult, costly or impossible. Examples include satellites, island communities, remote locations and ocean vessels.

* When grid connected, solar electric generation can displace the highest cost electricity during times of peak demand (in most climatic regions), can reduce grid loading, and can eliminate the need for local battery power for use in times of darkness and high local demand; such application is encouraged by net metering. Time-of-use net metering can be highly favorable to small photovoltaic systems.

* Grid connected solar electricity can be used locally thus minimizing transmission/distribution losses (approximately 7.2%).

* Once the initial capital cost of building a solar power plant has been spent, operating costs are low when compared to existing power technologies.


* Limited power density: Average daily insolation in the contiguous U.S. is 3-7 kWh/m2 usable by 7-17.7% efficient solar panels.

* Intermittency: It is not available at night and is reduced when there is cloud cover, decreasing the reliability of peak output performance or requiring a means of energy storage. For power grids to stay functional at all times, the addition of substantial amounts of solar generated electricity would require the expansion of energy storage facilities, other renewable energy sources, or the use of backup conventional powerplants. There is an energy cost to keep coal-burning power plants 'hot', which includes the burning of coal to keep boilers at temperature. However, natural gas power plants can quickly come up to full load without requiring significant standby idling.

* Locations at high latitudes or with substantial cloud cover offer reduced potential for solar power use.

* Like electricity from nuclear or fossil fuel plants, it can only realistically be used to power transport vehicles by converting light energy into another form of energy (e.g. battery stored electricity or by electrolysing water to produce hydrogen) suitable for transport.

* Solar cells produce DC which must be converted to AC when used in currently existing distribution grids. This incurs an energy penalty of 4-12%.

For a stand-alone system, some means must be employed to store the collected energy for use during hours of darkness or cloud cover. The following list includes both mature and immature techniques:

* Electrochemically in batteries
* Cryogenic liquid air or nitrogen
* Compressed air in a cylinder
* Flywheel energy storage
* Hydrogen produced by electrolysis of water and then available for pollution free combustion
* Hydraulic accumulator
* Pumped-storage hydroelectricity
* Molten salt
* Superconducting magnetic energy storages

Storage always has an extra stage of energy conversion, with consequent energy losses, greatly increasing capital costs. One way around this is to export excess power to the power grid, drawing it back when needed. This appears to use the power grid as a battery but in fact is relying on conventional energy production through the grid during the night. However, since the grid always has a positive outflow, the result is exactly the same.

Electric power costs are highly dependent on the consumption per time of day, since plants must be built for peak power (not average power). Expensive gas-fired "peaking generators" must be used when base capacity is insufficient. Fortunately for solar, solar capacity parallels energy demand -since much of the electricity is for removing heat produced by too much solar energy (air conditioners)! This is less true in the winter. Wind power complements solar power since it can produce energy when there is no sunlight.

Deployment of solar power depends largely upon local conditions and requirements. All industrialised nations share a need for electricity and it is clear that solar power will increasingly be used as an option for electricity supply.

Development of a practical solar powered car has been an engineering goal for twenty years. The center of this development is the World Solar Challenge, a biannual solar powered car race over 3021 km through central Australia from Darwin to Adelaide. The race's stated objective is to promote research into solar-powered cars. Teams from universities and enterprises participate. In 1987 when it was founded the winner's average speed was 67 km/h. By the 2005 race this had increased to an average speed of greater than 100 km/h, even though the cars were faced with the 110 km/h South Australia speed limit.Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts.
Virtual Magic is a human knowledge database blog. Text Based On Information From Wikipedia, Under The GNU Free Documentation License. Copyright (c) 2007 Virtual Magic. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Links to this post:

Create a Link

<< Home